#!/usr/bin/env python3 import json import numpy as np from openpilot.common.realtime import DT_MDL from openpilot.frogpilot.common.frogpilot_variables import CRUISING_SPEED, DEFAULT_LATERAL_ACCELERATION, PLANNER_TIME, params CALIBRATION_PROGRESS_THRESHOLD = 10 / DT_MDL MAX_CURVATURE = 0.1 MIN_CURVATURE = 0.001 PERCENTILE = 90 ROUNDING_PRECISION = 5 STEP = 0.001 class CurveSpeedController: def __init__(self, FrogPilotVCruise): self.frogpilot_planner = FrogPilotVCruise.frogpilot_planner self.enable_training = False self.target_set = False self.training_timer = 0 self.curvature_data = json.loads(params.get("CurvatureData") or "{}") self.required_curvatures = [str(round(road_curvature, ROUNDING_PRECISION)) for road_curvature in np.arange(MIN_CURVATURE, MAX_CURVATURE + STEP, STEP)] self.update_lateral_acceleration() def log_data(self, v_ego, sm): self.enable_training = v_ego > CRUISING_SPEED self.enable_training &= not self.frogpilot_planner.tracking_lead self.enable_training &= not sm["carControl"].longActive if self.enable_training: self.training_timer += DT_MDL if self.training_timer >= PLANNER_TIME and self.frogpilot_planner.driving_in_curve and not (sm["carState"].leftBlinker or sm["carState"].rightBlinker): lateral_acceleration = abs(self.frogpilot_planner.lateral_acceleration) road_curvature = abs(round(self.frogpilot_planner.road_curvature, ROUNDING_PRECISION)) key = str(road_curvature) if key in self.curvature_data: data = self.curvature_data[key] average = data["average"] count = data["count"] self.curvature_data[key] = { "average": ((average * count) + lateral_acceleration) / (count + 1), "count": count + 1 } else: self.curvature_data[key] = { "average": lateral_acceleration, "count": 1 } self.update_lateral_acceleration() else: self.enable_training = False elif self.training_timer >= PLANNER_TIME: progress = 0.0 for key in self.required_curvatures: if key in self.curvature_data: progress += min(self.curvature_data[key]["count"] / CALIBRATION_PROGRESS_THRESHOLD, 1.0) params.put_float_nonblocking("CalibrationProgress", (progress / len(self.required_curvatures)) * 100) params.put_nonblocking("CurvatureData", json.dumps(self.curvature_data)) self.enable_training = False self.training_timer = 0 else: self.enable_training = False self.training_timer = 0 def update_lateral_acceleration(self): if self.curvature_data: all_samples = [data["average"] for data in self.curvature_data.values()] self.lateral_acceleration = float(np.percentile(all_samples, PERCENTILE)) else: self.lateral_acceleration = DEFAULT_LATERAL_ACCELERATION params.put_float_nonblocking("CalibratedLateralAcceleration", self.lateral_acceleration) def update_target(self, v_ego): lateral_acceleration = self.lateral_acceleration if self.frogpilot_planner.frogpilot_weather.weather_id != 0: lateral_acceleration -= self.lateral_acceleration * self.frogpilot_planner.frogpilot_weather.reduce_lateral_acceleration if self.target_set: csc_speed = (lateral_acceleration / abs(self.frogpilot_planner.road_curvature))**0.5 decel_rate = (v_ego - csc_speed) / self.frogpilot_planner.time_to_curve self.target -= decel_rate * DT_MDL self.target = float(np.clip(self.target, CRUISING_SPEED, csc_speed)) else: self.target_set = True self.target = v_ego