openpilot/tinygrad_repo/test/external/external_llm_eval.py
Vehicle Researcher c5d5c5d1f3 openpilot v0.10.1 release
date: 2025-10-24T00:30:59
master commit: 405631baf9685e171a0dd19547cb763f1b163d18
2025-10-24 00:31:03 -07:00

36 lines
1.6 KiB
Python

# eval for tinygrad.apps.llm
import pyarrow.parquet as pq
from tinygrad.helpers import fetch, colored
from tinygrad.apps.llm import Transformer, SimpleTokenizer, models
from tinygrad import Tensor
if __name__ == "__main__":
dat = fetch("https://huggingface.co/datasets/allenai/ai2_arc/resolve/main/ARC-Challenge/test-00000-of-00001.parquet")
table = pq.read_table(dat)
model, kv = Transformer.from_gguf(Tensor.from_url(models["1B"]), max_context=4096)
tok = SimpleTokenizer.from_gguf_kv(kv)
bos_id: int = kv['tokenizer.ggml.bos_token_id']
eos_id: int = kv['tokenizer.ggml.eos_token_id']
num_correct, num_answered = 0, 0
total_questions = len(table["question"])
for question, choices, answer in zip(table["question"], table["choices"], table["answerKey"]):
phrasing = f"Question: {question}\n\n" + \
'\n'.join([f"{k}) {v}" for k,v in zip(choices['label'], choices['text'])]) +\
"\n\nReply with the letter of the correct answer only."
try:
ids = [bos_id] + tok.role("user") + tok.encode(phrasing) + [eos_id] + tok.role("assistant") + tok.encode("Answer: ")
except RuntimeError:
# TODO: fix the tokenizer
pass
next_id = next(model.generate(ids))
correct, given = answer.as_py().strip(), tok.decode([next_id]).strip()
num_correct += correct == given
num_answered += 1
print(f"{num_answered:4d}/{total_questions:4d} "+\
f"Correct Answer: {correct} "+\
f"Given Answer: {colored(given, 'green' if correct==given else 'red')} "+\
f"Percent: {num_correct*100.0/num_answered:.2f}%")