openpilot/tinygrad_repo/tinygrad/codegen/simplify.py
Vehicle Researcher c5d5c5d1f3 openpilot v0.10.1 release
date: 2025-10-24T00:30:59
master commit: 405631baf9685e171a0dd19547cb763f1b163d18
2025-10-24 00:31:03 -07:00

121 lines
6.0 KiB
Python

from tinygrad.uop.ops import UOp, PatternMatcher, UPat, Ops, graph_rewrite, _substitute, range_start
from tinygrad.uop.symbolic import symbolic_flat, sym
from tinygrad.helpers import partition
from tinygrad.dtype import dtypes
def flatten_range(r:UOp):
off = range_start[r.op]
rngs = r.src[off:]
if not len(rngs): return None
new_rngs = [x for x in UOp.sink(*rngs).toposort() if x.op is Ops.RANGE]
return r.replace(src=r.src[:off]+tuple(new_rngs))
pm_flatten_range = PatternMatcher([
# real ranges only
(UPat((Ops.REDUCE, Ops.STORE), name="r"), flatten_range),
])
def count_divmod(x:UOp): return len([u for u in x.toposort() if u.op in {Ops.IDIV, Ops.MOD}])
def simplify_merge_adjacent(u:UOp) -> UOp|None:
i = range_start[u.op]
while i < len(u.src)-1:
r0, r1 = u.src[i], u.src[i+1]
# check same type
if r0.arg[-1] == r1.arg[-1]:
s0, s1 = r0.src[0], r1.src[0]
# do the merge
new_range = r0.replace(src=(s0*s1,))
nidx = graph_rewrite(u, _substitute+symbolic_flat+pm_flatten_range, ctx={r0:new_range//s1, r1:new_range%s1},
name=f"check_merge_{r0.arg[0]}_{r1.arg[0]}")
# check if it simplifies
if count_divmod(nidx) <= count_divmod(u):
u = nidx
continue
i += 1
return u
pm_simplify_ranges = PatternMatcher([
(UPat((Ops.STORE, Ops.REDUCE), name="u"), simplify_merge_adjacent),
])
# **** reduce simplification ****
def reduce_rangeless(red:UOp):
# TODO: share code with reduce_unparented
if red.arg not in {Ops.ADD, Ops.MAX}: return None
if red.src[0].dtype != red.dtype: return None
if any(x.op in {Ops.RANGE} for x in red.src[0].toposort()): return None
ret = red.src[0]
if red.arg is Ops.ADD:
for r in red.src[1:]:
ret = ret * r.src[0].cast(ret.dtype.scalar()).broadcast(ret.dtype.count)
return ret
def no_range(u:UOp) -> bool: return not any(x.op is Ops.RANGE for x in u.sparents)
pm_reduce_collapse = PatternMatcher([
# lift x+y out of reduce on lt
((UPat.var("x")+UPat.var("y")).or_casted() < UPat.var("c"), lambda x,y,c: (x < (c.cast(y.dtype)-y)) if no_range(y) and no_range(c) else None),
# lift x*y out of reduce
((UPat.var("x")*UPat.var("y")) < UPat.var("c"),
lambda x,y,c: (x < ((c+y-1) // y)) if no_range(y) and no_range(c) and y.vmin > 0 else None),
# lift x+y out of reduce on ne
((UPat.var("x")+UPat.var("y")).or_casted() != UPat.var("c"), lambda x,y,c: (x != (c.cast(y.dtype)-y)) if no_range(y) and no_range(c) else None),
# fold the range
((UPat(Ops.RANGE, name="r") < UPat.var("cut")).where(0, UPat.cvar("val")).reduce(arg=Ops.ADD, allow_any_len=True),
lambda r,cut,val: (r.src[0]-cut).maximum(0).minimum(r.src[0]).cast(val.dtype) * val),
((UPat(Ops.RANGE, name="r") < UPat.var("cut")).where(UPat.cvar("val"), 0).reduce(arg=Ops.ADD, allow_any_len=True),
lambda r,cut,val: cut.maximum(0).minimum(r.src[0]).cast(val.dtype) * val),
# REDUCE on ADD
((UPat.var("x")+UPat.var("y")).reduce(arg=Ops.ADD, allow_any_len=True, name="r"),
lambda x,y,r: x.reduce(*r.src[1:], arg=Ops.ADD) + y.reduce(*r.src[1:],arg=Ops.ADD)),
# MUL casted bool
((UPat.var("x") * UPat.var("gate", dtype=dtypes.bool).cast().or_broadcasted(name="b")),
lambda x,gate,b=None: gate.broadcast(x.dtype.count).where(x, 0) if b is not None else gate.where(x, 0)),
# WHERE on LOAD (works on max too)
(UPat.var("gate").where(UPat(Ops.INDEX, src=(UPat.var("buf"), UPat.var("idx"))).load(), 0).reduce(arg=Ops.ADD, allow_any_len=True),
lambda buf,idx,gate: buf.index(idx, gate).load()),
(UPat.var("gate").where(0, UPat(Ops.INDEX, src=(UPat.var("buf"), UPat.var("idx"))).load()).reduce(arg=Ops.ADD, allow_any_len=True),
lambda buf,idx,gate: buf.index(idx, gate.logical_not()).load()),
# INDEX on RANGE / gated RANGE
(UPat.var("buf").index(UPat.var("expr"), UPat.var("idx").eq(UPat(Ops.RANGE, name="r").or_casted())),
lambda buf,r,idx,expr: buf.index(expr.substitute({r:idx.cast(r.dtype)}), (idx.cast(r.dtype) >= 0) & (idx.cast(r.dtype) < r.src[0]))),
# AND on WHERE
((UPat.any(UPat(Ops.DEFINE_VAR, name="x"), UPat(Ops.DEFINE_VAR).gep(name="x")) & UPat.var("y")) \
.where(UPat.cvar("c"), 0).reduce(arg=Ops.ADD, allow_any_len=True, name="r"),
lambda x,y,c,r: y.where(c, 0).reduce(*r.src[1:], arg=Ops.ADD)*x.cast(c.dtype)),
# remove REDUCEs that no longer have a RANGE in the src
(UPat(Ops.REDUCE, name="red"), reduce_rangeless),
])+sym
def reduce_collapse(red:UOp):
included, not_included = partition(red.parents, lambda x: any(y in x.sparents for y in red.src[1:]))
if any(x.op in {Ops.STORE, Ops.REDUCE} for x in included): return None
replaces: dict[UOp, UOp] = {}
for u in included:
for s in u.src:
if s in not_included and s not in replaces and s.op not in {Ops.CONST, Ops.VCONST, Ops.DEFINE_GLOBAL, Ops.DEFINE_LOCAL, Ops.DEFINE_VAR}:
replaces[s] = UOp(Ops.DEFINE_VAR, dtype=s.dtype, arg=(f'in{len(replaces)}', s.vmin, s.vmax))
collapse_fxn = red.substitute(replaces)
sink = graph_rewrite(collapse_fxn, pm_reduce_collapse, name="reduce_collapse")
if any(x.op is Ops.RANGE for x in sink.toposort()): return None
return sink.substitute({v:k for k,v in replaces.items()})
def reduce_unparented(red:UOp):
if red.arg not in {Ops.ADD, Ops.MAX, Ops.MUL}: return None
reduce_parented, reduce_unparented = partition(red.src[1:], lambda x: x in red.src[0].sparents)
if len(reduce_unparented) == 0: return None
ret = red.replace(src=(red.src[0],)+tuple(reduce_parented)) if len(reduce_parented) or red.dtype != red.src[0].dtype else red.src[0]
if red.arg is Ops.ADD:
for r in reduce_unparented: ret = ret * r.src[0].cast(ret.dtype.scalar()).broadcast(ret.dtype.count)
if red.arg is Ops.MUL:
for r in reduce_unparented: ret = ret ** r.src[0].cast(ret.dtype.scalar()).broadcast(ret.dtype.count)
return ret
pm_reduce_simplify = PatternMatcher([
# remove any ranges from a REDUCE that aren't referenced in the reduce source
(UPat(Ops.REDUCE, name="red"), reduce_unparented),
# remove REDUCE without loads (generic arange opt / indexing). TODO: support multi range
(UPat(Ops.REDUCE, src=(UPat(), UPat()), name="red"), reduce_collapse),
])