openpilot/tools/jotpluggler/views.py
Vehicle Researcher c5d5c5d1f3 openpilot v0.10.1 release
date: 2025-10-24T00:30:59
master commit: 405631baf9685e171a0dd19547cb763f1b163d18
2025-10-24 00:31:03 -07:00

295 lines
11 KiB
Python

import uuid
import threading
import numpy as np
from collections import deque
import dearpygui.dearpygui as dpg
from abc import ABC, abstractmethod
class ViewPanel(ABC):
"""Abstract base class for all view panels that can be displayed in a plot container"""
def __init__(self, panel_id: str = None):
self.panel_id = panel_id or str(uuid.uuid4())
self.title = "Untitled Panel"
@abstractmethod
def clear(self):
pass
@abstractmethod
def create_ui(self, parent_tag: str):
pass
@abstractmethod
def destroy_ui(self):
pass
@abstractmethod
def get_panel_type(self) -> str:
pass
@abstractmethod
def update(self):
pass
@abstractmethod
def to_dict(self) -> dict:
pass
@classmethod
@abstractmethod
def load_from_dict(cls, data: dict, data_manager, playback_manager, worker_manager):
pass
class TimeSeriesPanel(ViewPanel):
def __init__(self, data_manager, playback_manager, worker_manager, panel_id: str | None = None):
super().__init__(panel_id)
self.data_manager = data_manager
self.playback_manager = playback_manager
self.worker_manager = worker_manager
self.title = "Time Series Plot"
self.plot_tag = f"plot_{self.panel_id}"
self.x_axis_tag = f"{self.plot_tag}_x_axis"
self.y_axis_tag = f"{self.plot_tag}_y_axis"
self.timeline_indicator_tag = f"{self.plot_tag}_timeline"
self._ui_created = False
self._series_data: dict[str, tuple[np.ndarray, np.ndarray]] = {}
self._last_plot_duration = 0
self._update_lock = threading.RLock()
self._results_deque: deque[tuple[str, list, list]] = deque()
self._new_data = False
self._last_x_limits = (0.0, 0.0)
self._queued_x_sync: tuple | None = None
self._queued_reallow_x_zoom = False
self._total_segments = self.playback_manager.num_segments
def to_dict(self) -> dict:
return {
"type": "timeseries",
"title": self.title,
"series_paths": list(self._series_data.keys())
}
@classmethod
def load_from_dict(cls, data: dict, data_manager, playback_manager, worker_manager):
panel = cls(data_manager, playback_manager, worker_manager)
panel.title = data.get("title", "Time Series Plot")
panel._series_data = {path: (np.array([]), np.array([])) for path in data.get("series_paths", [])}
return panel
def create_ui(self, parent_tag: str):
self.data_manager.add_observer(self.on_data_loaded)
self.playback_manager.add_x_axis_observer(self._on_x_axis_sync)
with dpg.plot(height=-1, width=-1, tag=self.plot_tag, parent=parent_tag, drop_callback=self._on_series_drop, payload_type="TIMESERIES_PAYLOAD"):
dpg.add_plot_legend()
dpg.add_plot_axis(dpg.mvXAxis, no_label=True, tag=self.x_axis_tag)
dpg.add_plot_axis(dpg.mvYAxis, no_label=True, tag=self.y_axis_tag)
timeline_series_tag = dpg.add_inf_line_series(x=[0], label="Timeline", parent=self.y_axis_tag, tag=self.timeline_indicator_tag)
dpg.bind_item_theme(timeline_series_tag, "timeline_theme")
self._new_data = True
self._queued_x_sync = self.playback_manager.x_axis_bounds
self._ui_created = True
def update(self):
with self._update_lock:
if not self._ui_created:
return
if self._queued_x_sync:
min_time, max_time = self._queued_x_sync
self._queued_x_sync = None
dpg.set_axis_limits(self.x_axis_tag, min_time, max_time)
self._last_x_limits = (min_time, max_time)
self._fit_y_axis(min_time, max_time)
self._queued_reallow_x_zoom = True # must wait a frame before allowing user changes so that axis limits take effect
return
if self._queued_reallow_x_zoom:
self._queued_reallow_x_zoom = False
if tuple(dpg.get_axis_limits(self.x_axis_tag)) == self._last_x_limits:
dpg.set_axis_limits_auto(self.x_axis_tag)
else:
self._queued_x_sync = self._last_x_limits # retry, likely too early
return
if self._new_data: # handle new data in main thread
self._new_data = False
if self._total_segments > 0:
dpg.set_axis_limits_constraints(self.x_axis_tag, -10, self._total_segments * 60 + 10)
self._fit_y_axis(*dpg.get_axis_limits(self.x_axis_tag))
for series_path in list(self._series_data.keys()):
self.add_series(series_path, update=True)
current_limits = dpg.get_axis_limits(self.x_axis_tag)
# downsample if plot zoom changed significantly
plot_duration = current_limits[1] - current_limits[0]
if plot_duration > self._last_plot_duration * 2 or plot_duration < self._last_plot_duration * 0.5:
self._downsample_all_series(plot_duration)
# sync x-axis if changed by user
if self._last_x_limits != current_limits:
self.playback_manager.set_x_axis_bounds(current_limits[0], current_limits[1], source_panel=self)
self._last_x_limits = current_limits
self._fit_y_axis(current_limits[0], current_limits[1])
while self._results_deque: # handle downsampled results in main thread
results = self._results_deque.popleft()
for series_path, downsampled_time, downsampled_values in results:
series_tag = f"series_{self.panel_id}_{series_path}"
if dpg.does_item_exist(series_tag):
dpg.set_value(series_tag, (downsampled_time, downsampled_values.astype(float)))
# update timeline
current_time_s = self.playback_manager.current_time_s
dpg.set_value(self.timeline_indicator_tag, [[current_time_s], [0]])
# update timeseries legend label
for series_path, (time_array, value_array) in self._series_data.items():
position = np.searchsorted(time_array, current_time_s, side='right') - 1
if position >= 0 and (current_time_s - time_array[position]) <= 1.0:
value = value_array[position]
formatted_value = f"{value:.5f}" if np.issubdtype(type(value), np.floating) else str(value)
series_tag = f"series_{self.panel_id}_{series_path}"
if dpg.does_item_exist(series_tag):
dpg.configure_item(series_tag, label=f"{series_path}: {formatted_value}")
def _on_x_axis_sync(self, min_time: float, max_time: float, source_panel):
with self._update_lock:
if source_panel != self:
self._queued_x_sync = (min_time, max_time)
def _fit_y_axis(self, x_min: float, x_max: float):
if not self._series_data:
dpg.set_axis_limits(self.y_axis_tag, -1, 1)
return
global_min = float('inf')
global_max = float('-inf')
found_data = False
for time_array, value_array in self._series_data.values():
if len(time_array) == 0:
continue
start_idx, end_idx = np.searchsorted(time_array, [x_min, x_max])
end_idx = min(end_idx, len(time_array) - 1)
if start_idx <= end_idx:
y_slice = value_array[start_idx:end_idx + 1]
series_min, series_max = np.min(y_slice), np.max(y_slice)
global_min = min(global_min, series_min)
global_max = max(global_max, series_max)
found_data = True
if not found_data:
dpg.set_axis_limits(self.y_axis_tag, -1, 1)
return
if global_min == global_max:
padding = max(abs(global_min) * 0.1, 1.0)
y_min, y_max = global_min - padding, global_max + padding
else:
range_size = global_max - global_min
padding = range_size * 0.1
y_min, y_max = global_min - padding, global_max + padding
dpg.set_axis_limits(self.y_axis_tag, y_min, y_max)
def _downsample_all_series(self, plot_duration):
plot_width = dpg.get_item_rect_size(self.plot_tag)[0]
if plot_width <= 0 or plot_duration <= 0:
return
self._last_plot_duration = plot_duration
target_points_per_second = plot_width / plot_duration
work_items = []
for series_path, (time_array, value_array) in self._series_data.items():
if len(time_array) == 0:
continue
series_duration = time_array[-1] - time_array[0] if len(time_array) > 1 else 1
points_per_second = len(time_array) / series_duration
if points_per_second > target_points_per_second * 2:
target_points = max(int(target_points_per_second * series_duration), plot_width)
work_items.append((series_path, time_array, value_array, target_points))
elif dpg.does_item_exist(f"series_{self.panel_id}_{series_path}"):
dpg.set_value(f"series_{self.panel_id}_{series_path}", (time_array, value_array.astype(float)))
if work_items:
self.worker_manager.submit_task(
TimeSeriesPanel._downsample_worker, work_items, callback=lambda results: self._results_deque.append(results), task_id=f"downsample_{self.panel_id}"
)
def add_series(self, series_path: str, update: bool = False):
with self._update_lock:
if update or series_path not in self._series_data:
self._series_data[series_path] = self.data_manager.get_timeseries(series_path)
time_array, value_array = self._series_data[series_path]
series_tag = f"series_{self.panel_id}_{series_path}"
if dpg.does_item_exist(series_tag):
dpg.set_value(series_tag, (time_array, value_array.astype(float)))
else:
line_series_tag = dpg.add_line_series(x=time_array, y=value_array.astype(float), label=series_path, parent=self.y_axis_tag, tag=series_tag)
dpg.bind_item_theme(line_series_tag, "line_theme")
self._fit_y_axis(*dpg.get_axis_limits(self.x_axis_tag))
plot_duration = dpg.get_axis_limits(self.x_axis_tag)[1] - dpg.get_axis_limits(self.x_axis_tag)[0]
self._downsample_all_series(plot_duration)
def destroy_ui(self):
with self._update_lock:
self.data_manager.remove_observer(self.on_data_loaded)
self.playback_manager.remove_x_axis_observer(self._on_x_axis_sync)
if dpg.does_item_exist(self.plot_tag):
dpg.delete_item(self.plot_tag)
self._ui_created = False
def get_panel_type(self) -> str:
return "timeseries"
def clear(self):
with self._update_lock:
for series_path in list(self._series_data.keys()):
self.remove_series(series_path)
def remove_series(self, series_path: str):
with self._update_lock:
if series_path in self._series_data:
if dpg.does_item_exist(f"series_{self.panel_id}_{series_path}"):
dpg.delete_item(f"series_{self.panel_id}_{series_path}")
del self._series_data[series_path]
def on_data_loaded(self, data: dict):
with self._update_lock:
self._new_data = True
if data.get('metadata_loaded'):
self._total_segments = data.get('total_segments', 0)
limits = (-10, self._total_segments * 60 + 10)
self._queued_x_sync = limits
def _on_series_drop(self, sender, app_data, user_data):
self.add_series(app_data)
@staticmethod
def _downsample_worker(series_path, time_array, value_array, target_points):
if len(time_array) <= target_points:
return series_path, time_array, value_array
step = len(time_array) / target_points
indices = []
for i in range(target_points):
start_idx = int(i * step)
end_idx = int((i + 1) * step)
if start_idx == end_idx:
indices.append(start_idx)
else:
bucket_values = value_array[start_idx:end_idx]
min_idx = start_idx + np.argmin(bucket_values)
max_idx = start_idx + np.argmax(bucket_values)
if min_idx != max_idx:
indices.extend([min(min_idx, max_idx), max(min_idx, max_idx)])
else:
indices.append(min_idx)
indices = sorted(set(indices))
return series_path, time_array[indices], value_array[indices]