openpilot/selfdrive/debug/max_lat_accel.py
Vehicle Researcher c5d5c5d1f3 openpilot v0.10.1 release
date: 2025-10-24T00:30:59
master commit: 405631baf9685e171a0dd19547cb763f1b163d18
2025-10-24 00:31:03 -07:00

132 lines
4.7 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import numpy as np
import matplotlib.pyplot as plt
from functools import partial
from tqdm import tqdm
from typing import NamedTuple
from openpilot.tools.lib.logreader import LogReader
from openpilot.selfdrive.locationd.models.pose_kf import EARTH_G
RLOG_MIN_LAT_ACTIVE = 50
RLOG_MIN_STEERING_UNPRESSED = 50
RLOG_MIN_REQUESTING_MAX = 25 # sample many times after reaching max torque
QLOG_DECIMATION = 10
class Event(NamedTuple):
lateral_accel: float
speed: float
roll: float
timestamp: float # relative to start of route (s)
def find_events(lr: LogReader, extrapolate: bool = False, qlog: bool = False) -> list[Event]:
min_lat_active = RLOG_MIN_LAT_ACTIVE // QLOG_DECIMATION if qlog else RLOG_MIN_LAT_ACTIVE
min_steering_unpressed = RLOG_MIN_STEERING_UNPRESSED // QLOG_DECIMATION if qlog else RLOG_MIN_STEERING_UNPRESSED
min_requesting_max = RLOG_MIN_REQUESTING_MAX // QLOG_DECIMATION if qlog else RLOG_MIN_REQUESTING_MAX
# if we test with driver torque safety, max torque can be slightly noisy
steer_threshold = 0.7 if extrapolate else 0.95
events = []
# state tracking
steering_unpressed = 0 # frames
requesting_max = 0 # frames
lat_active = 0 # frames
# current state
curvature = 0
v_ego = 0
roll = 0
out_torque = 0
start_ts = 0
for msg in lr:
if msg.which() == 'carControl':
if start_ts == 0:
start_ts = msg.logMonoTime
lat_active = lat_active + 1 if msg.carControl.latActive else 0
elif msg.which() == 'carOutput':
out_torque = msg.carOutput.actuatorsOutput.torque
requesting_max = requesting_max + 1 if abs(out_torque) > steer_threshold else 0
elif msg.which() == 'carState':
steering_unpressed = steering_unpressed + 1 if not msg.carState.steeringPressed else 0
v_ego = msg.carState.vEgo
elif msg.which() == 'controlsState':
curvature = msg.controlsState.curvature
elif msg.which() == 'liveParameters':
roll = msg.liveParameters.roll
if lat_active > min_lat_active and steering_unpressed > min_steering_unpressed and requesting_max > min_requesting_max:
# TODO: record max lat accel at the end of the event, need to use the past lat accel as overriding can happen before we detect it
requesting_max = 0
factor = 1 / abs(out_torque)
current_lateral_accel = (curvature * v_ego ** 2 * factor) - roll * EARTH_G
events.append(Event(current_lateral_accel, v_ego, roll, round((msg.logMonoTime - start_ts) * 1e-9, 2)))
print(events[-1])
return events
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Find max lateral acceleration events",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("route", nargs='+')
parser.add_argument("-e", "--extrapolate", action="store_true", help="Extrapolates max lateral acceleration events linearly. " +
"This option can be far less accurate.")
args = parser.parse_args()
events = []
for route in tqdm(args.route):
try:
lr = LogReader(route, sort_by_time=True)
except Exception:
print(f'Skipping {route}')
continue
qlog = route.endswith('/q')
if qlog:
print('WARNING: Treating route as qlog!')
print('Finding events...')
events += lr.run_across_segments(8, partial(find_events, extrapolate=args.extrapolate, qlog=qlog), disable_tqdm=True)
print()
print(f'Found {len(events)} events')
perc_left_accel = -np.percentile([-ev.lateral_accel for ev in events if ev.lateral_accel < 0] or [0], 90)
perc_right_accel = np.percentile([ev.lateral_accel for ev in events if ev.lateral_accel > 0] or [0], 90)
CP = lr.first('carParams')
plt.ion()
plt.clf()
plt.suptitle(f'{CP.carFingerprint} - Max lateral acceleration events')
plt.title(', '.join(args.route))
plt.scatter([ev.speed for ev in events], [ev.lateral_accel for ev in events], label='max lateral accel events')
plt.plot([0, 35], [3, 3], c='r', label='ISO 11270 - 3 m/s^2')
plt.plot([0, 35], [-3, -3], c='r')
plt.plot([0, 35], [perc_left_accel, perc_left_accel], c='g', linestyle='--', label='90th percentile left lateral accel')
plt.plot([0, 35], [perc_right_accel, perc_right_accel], c='#ff7f0e', linestyle='--', label='90th percentile right lateral accel')
plt.text(0.4, float(perc_left_accel + 0.4), f'{perc_left_accel:.2f} m/s^2', verticalalignment='center', fontsize=12)
plt.text(0.4, float(perc_right_accel - 0.4), f'{perc_right_accel:.2f} m/s^2', verticalalignment='center', fontsize=12)
plt.xlim(0, 35)
plt.ylim(-5, 5)
plt.xlabel('speed (m/s)')
plt.ylabel('lateral acceleration (m/s^2)')
plt.legend()
plt.show(block=True)