openpilot/selfdrive/ui/onroad/model_renderer.py
mouxangithub 6f2bd6efa3 feat(ui): 将字体权重统一调整为 CHINA 以支持中文字体渲染
将多个 UI 组件中的字体权重从原有的 `MEDIUM`、`NORMAL`、`BOLD` 等值统一修改为 `CHINA`,
以确保界面文本能够正确使用中文字体进行显示。同时调整了部分字号和标签样式,提升中文环境下的展示效果。
2025-11-20 11:43:26 +08:00

595 lines
20 KiB
Python

import colorsys
import numpy as np
import pyray as rl
from cereal import messaging, car
from dataclasses import dataclass, field
from openpilot.common.filter_simple import FirstOrderFilter
from openpilot.common.params import Params
from openpilot.selfdrive.locationd.calibrationd import HEIGHT_INIT
from openpilot.selfdrive.ui.ui_state import ui_state
from openpilot.system.ui.lib.application import gui_app, FontWeight
from openpilot.system.ui.lib.text_measure import measure_text_cached
from openpilot.system.ui.lib.shader_polygon import draw_polygon, Gradient
from openpilot.system.ui.widgets import Widget
CLIP_MARGIN = 500
MIN_DRAW_DISTANCE = 10.0
MAX_DRAW_DISTANCE = 100.0
MAX_POINTS = 200
THROTTLE_COLORS = [
rl.Color(13, 248, 122, 102), # HSLF(148/360, 0.94, 0.51, 0.4)
rl.Color(114, 255, 92, 89), # HSLF(112/360, 1.0, 0.68, 0.35)
rl.Color(114, 255, 92, 0), # HSLF(112/360, 1.0, 0.68, 0.0)
]
NO_THROTTLE_COLORS = [
rl.Color(242, 242, 242, 102), # HSLF(148/360, 0.0, 0.95, 0.4)
rl.Color(242, 242, 242, 89), # HSLF(112/360, 0.0, 0.95, 0.35)
rl.Color(242, 242, 242, 0), # HSLF(112/360, 0.0, 0.95, 0.0)
]
# dp
DP_RAINBOW_SCROLL_SPEED_FACTOR = 20.0
DP_RAINBOW_NUM_REPEATS = 3
DP_RAINBOW_ALPHA = 128
DP_RAINBOW_GRADIENT_SAMPLES = 20
DP_RAINBOW_HUE_SECTORS = 6
@dataclass
class ModelPoints:
raw_points: np.ndarray = field(default_factory=lambda: np.empty((0, 3), dtype=np.float32))
projected_points: np.ndarray = field(default_factory=lambda: np.empty((0, 2), dtype=np.float32))
@dataclass
class LeadVehicle:
glow: list[float] = field(default_factory=list)
chevron: list[float] = field(default_factory=list)
fill_alpha: int = 0
# dp
d_rel: float = 0.0
x: float = 0.0
y: float = 0.0
sz: float = 0.0
@dataclass
class DpUiLeadMode:
off = 0
lead = 1
radar = 2
all = 3
class ModelRenderer(Widget):
def __init__(self):
super().__init__()
self._longitudinal_control = False
self._experimental_mode = False
self._blend_filter = FirstOrderFilter(1.0, 0.25, 1 / gui_app.target_fps)
self._prev_allow_throttle = True
self._lane_line_probs = np.zeros(4, dtype=np.float32)
self._road_edge_stds = np.zeros(2, dtype=np.float32)
self._lead_vehicles = [LeadVehicle(), LeadVehicle()]
self._path_offset_z = HEIGHT_INIT[0]
# Initialize ModelPoints objects
self._path = ModelPoints()
self._lane_lines = [ModelPoints() for _ in range(4)]
self._road_edges = [ModelPoints() for _ in range(2)]
self._acceleration_x = np.empty((0,), dtype=np.float32)
# Transform matrix (3x3 for car space to screen space)
self._car_space_transform = np.zeros((3, 3), dtype=np.float32)
self._transform_dirty = True
self._clip_region = None
self._exp_gradient = Gradient(
start=(0.0, 1.0), # Bottom of path
end=(0.0, 0.0), # Top of path
colors=[],
stops=[],
)
# Get longitudinal control setting from car parameters
if car_params := Params().get("CarParams"):
cp = messaging.log_from_bytes(car_params, car.CarParams)
self._longitudinal_control = cp.openpilotLongitudinalControl
# dp
self._dp_ui_rainbow_rotation = 0.0
self._dp_ui_rainbow_gradient = None
def set_transform(self, transform: np.ndarray):
self._car_space_transform = transform.astype(np.float32)
self._transform_dirty = True
def _render(self, rect: rl.Rectangle):
sm = ui_state.sm
# Check if data is up-to-date
if (sm.recv_frame["liveCalibration"] < ui_state.started_frame or
sm.recv_frame["modelV2"] < ui_state.started_frame):
return
# Set up clipping region
self._clip_region = rl.Rectangle(
rect.x - CLIP_MARGIN, rect.y - CLIP_MARGIN, rect.width + 2 * CLIP_MARGIN, rect.height + 2 * CLIP_MARGIN
)
# Update state
self._experimental_mode = sm['selfdriveState'].experimentalMode
live_calib = sm['liveCalibration']
self._path_offset_z = live_calib.height[0] if live_calib.height else HEIGHT_INIT[0]
if sm.updated['carParams']:
self._longitudinal_control = sm['carParams'].openpilotLongitudinalControl
model = sm['modelV2']
radar_state = sm['radarState'] if sm.valid['radarState'] else None
lead_one = radar_state.leadOne if radar_state else None
render_lead_indicator = self._longitudinal_control and radar_state is not None
# Update model data when needed
model_updated = sm.updated['modelV2']
if model_updated or sm.updated['radarState'] or self._transform_dirty:
if model_updated:
self._update_raw_points(model)
path_x_array = self._path.raw_points[:, 0]
if path_x_array.size == 0:
return
self._update_model(lead_one, path_x_array)
if render_lead_indicator:
self._update_leads(radar_state, path_x_array)
self._transform_dirty = False
# dp - draw live tracks before everything
if ui_state.dp_ui_lead in [DpUiLeadMode.radar, DpUiLeadMode.all] and sm.valid['liveTracks']:
self._draw_live_tracks(sm)
# Draw elements
self._draw_lane_lines()
self._draw_path(sm)
if render_lead_indicator and radar_state:
self._draw_lead_indicator()
def _update_raw_points(self, model):
"""Update raw 3D points from model data"""
self._path.raw_points = np.array([model.position.x, model.position.y, model.position.z], dtype=np.float32).T
for i, lane_line in enumerate(model.laneLines):
self._lane_lines[i].raw_points = np.array([lane_line.x, lane_line.y, lane_line.z], dtype=np.float32).T
for i, road_edge in enumerate(model.roadEdges):
self._road_edges[i].raw_points = np.array([road_edge.x, road_edge.y, road_edge.z], dtype=np.float32).T
self._lane_line_probs = np.array(model.laneLineProbs, dtype=np.float32)
self._road_edge_stds = np.array(model.roadEdgeStds, dtype=np.float32)
self._acceleration_x = np.array(model.acceleration.x, dtype=np.float32)
def _update_leads(self, radar_state, path_x_array):
"""Update positions of lead vehicles"""
self._lead_vehicles = [LeadVehicle(), LeadVehicle()]
leads = [radar_state.leadOne, radar_state.leadTwo]
for i, lead_data in enumerate(leads):
if lead_data and lead_data.status:
d_rel, y_rel, v_rel = lead_data.dRel, lead_data.yRel, lead_data.vRel
idx = self._get_path_length_idx(path_x_array, d_rel)
# Get z-coordinate from path at the lead vehicle position
z = self._path.raw_points[idx, 2] if idx < len(self._path.raw_points) else 0.0
point = self._map_to_screen(d_rel, -y_rel, z + self._path_offset_z)
if point:
self._lead_vehicles[i] = self._update_lead_vehicle(d_rel, v_rel, point, self._rect)
def _update_model(self, lead, path_x_array):
"""Update model visualization data based on model message"""
max_distance = np.clip(path_x_array[-1], MIN_DRAW_DISTANCE, MAX_DRAW_DISTANCE)
max_idx = self._get_path_length_idx(self._lane_lines[0].raw_points[:, 0], max_distance)
# Update lane lines using raw points
for i, lane_line in enumerate(self._lane_lines):
lane_line.projected_points = self._map_line_to_polygon(
lane_line.raw_points, 0.025 * self._lane_line_probs[i], 0.0, max_idx, max_distance
)
# Update road edges using raw points
for road_edge in self._road_edges:
road_edge.projected_points = self._map_line_to_polygon(road_edge.raw_points, 0.025, 0.0, max_idx, max_distance)
# Update path using raw points
if lead and lead.status:
lead_d = lead.dRel * 2.0
max_distance = np.clip(lead_d - min(lead_d * 0.35, 10.0), 0.0, max_distance)
max_idx = self._get_path_length_idx(path_x_array, max_distance)
self._path.projected_points = self._map_line_to_polygon(
self._path.raw_points, 0.9, self._path_offset_z, max_idx, max_distance, allow_invert=False
)
self._update_experimental_gradient()
def _update_experimental_gradient(self):
"""Pre-calculate experimental mode gradient colors"""
if not self._experimental_mode:
return
max_len = min(len(self._path.projected_points) // 2, len(self._acceleration_x))
segment_colors = []
gradient_stops = []
i = 0
while i < max_len:
# Some points (screen space) are out of frame (rect space)
track_y = self._path.projected_points[i][1]
if track_y < self._rect.y or track_y > (self._rect.y + self._rect.height):
i += 1
continue
# Calculate color based on acceleration (0 is bottom, 1 is top)
lin_grad_point = 1 - (track_y - self._rect.y) / self._rect.height
# speed up: 120, slow down: 0
path_hue = np.clip(60 + self._acceleration_x[i] * 35, 0, 120)
saturation = min(abs(self._acceleration_x[i] * 1.5), 1)
lightness = np.interp(saturation, [0.0, 1.0], [0.95, 0.62])
alpha = np.interp(lin_grad_point, [0.75 / 2.0, 0.75], [0.4, 0.0])
# Use HSL to RGB conversion
color = self._hsla_to_color(path_hue / 360.0, saturation, lightness, alpha)
gradient_stops.append(lin_grad_point)
segment_colors.append(color)
# Skip a point, unless next is last
i += 1 + (1 if (i + 2) < max_len else 0)
# Store the gradient in the path object
self._exp_gradient = Gradient(
start=(0.0, 1.0), # Bottom of path
end=(0.0, 0.0), # Top of path
colors=segment_colors,
stops=gradient_stops,
)
def _update_lead_vehicle(self, d_rel, v_rel, point, rect):
speed_buff, lead_buff = 10.0, 40.0
# Calculate fill alpha
fill_alpha = 0
if d_rel < lead_buff:
fill_alpha = 255 * (1.0 - (d_rel / lead_buff))
if v_rel < 0:
fill_alpha += 255 * (-1 * (v_rel / speed_buff))
fill_alpha = min(fill_alpha, 255)
# Calculate size and position
sz = np.clip((25 * 30) / (d_rel / 3 + 30), 15.0, 30.0) * 2.35
x = np.clip(point[0], 0.0, rect.width - sz / 2)
y = min(point[1], rect.height - sz * 0.6)
g_xo = sz / 5
g_yo = sz / 10
glow = [(x + (sz * 1.35) + g_xo, y + sz + g_yo), (x, y - g_yo), (x - (sz * 1.35) - g_xo, y + sz + g_yo)]
chevron = [(x + (sz * 1.25), y + sz), (x, y), (x - (sz * 1.25), y + sz)]
return LeadVehicle(glow=glow, chevron=chevron, fill_alpha=int(fill_alpha), d_rel=d_rel, x=x, y=y, sz=sz)
def _draw_lane_lines(self):
"""Draw lane lines and road edges"""
for i, lane_line in enumerate(self._lane_lines):
if lane_line.projected_points.size == 0:
continue
alpha = np.clip(self._lane_line_probs[i], 0.0, 0.7)
color = rl.Color(255, 255, 255, int(alpha * 255))
draw_polygon(self._rect, lane_line.projected_points, color)
for i, road_edge in enumerate(self._road_edges):
if road_edge.projected_points.size == 0:
continue
alpha = np.clip(1.0 - self._road_edge_stds[i], 0.0, 1.0)
color = rl.Color(255, 0, 0, int(alpha * 255))
draw_polygon(self._rect, road_edge.projected_points, color)
def _draw_path(self, sm):
"""Draw path with dynamic coloring based on mode and throttle state."""
if not self._path.projected_points.size:
return
if ui_state.dp_ui_rainbow:
v_ego = sm['carState'].vEgo
self._update_rainbow_gradient(v_ego)
if self._dp_ui_rainbow_gradient:
draw_polygon(self._rect, self._path.projected_points, gradient=self._dp_ui_rainbow_gradient)
return
allow_throttle = sm['longitudinalPlan'].allowThrottle or not self._longitudinal_control
self._blend_filter.update(int(allow_throttle))
if self._experimental_mode:
# Draw with acceleration coloring
if len(self._exp_gradient.colors) > 1:
draw_polygon(self._rect, self._path.projected_points, gradient=self._exp_gradient)
else:
draw_polygon(self._rect, self._path.projected_points, rl.Color(255, 255, 255, 30))
else:
# Blend throttle/no throttle colors based on transition
blend_factor = round(self._blend_filter.x * 100) / 100
blended_colors = self._blend_colors(NO_THROTTLE_COLORS, THROTTLE_COLORS, blend_factor)
gradient = Gradient(
start=(0.0, 1.0), # Bottom of path
end=(0.0, 0.0), # Top of path
colors=blended_colors,
stops=[0.0, 0.5, 1.0],
)
draw_polygon(self._rect, self._path.projected_points, gradient=gradient)
def _draw_lead_indicator(self):
# Draw lead vehicles if available
for lead in self._lead_vehicles:
if not lead.glow or not lead.chevron:
continue
rl.draw_triangle_fan(lead.glow, len(lead.glow), rl.Color(218, 202, 37, 255))
rl.draw_triangle_fan(lead.chevron, len(lead.chevron), rl.Color(201, 34, 49, lead.fill_alpha))
if ui_state.dp_ui_lead in [DpUiLeadMode.lead, DpUiLeadMode.all]:
start_y = lead.y
# d_rel
dist_str = f"{lead.d_rel:.1f}m" if ui_state.is_metric else f"{lead.d_rel * 3.28084:.1f}ft"
self._dp_paint_centered_lead_text(dist_str, 56, lead.x, start_y + lead.sz)
# ttc
car_state = ui_state.sm['carState']
ttc = (lead.d_rel / car_state.vEgo) if car_state.vEgo > 0 else float("NaN")
if ttc < 5.:
ttc_str = f"{ttc:.1f}s"
self._dp_paint_centered_lead_text(ttc_str, 80, lead.x, start_y + lead.sz + 40)
@staticmethod
def _get_path_length_idx(pos_x_array: np.ndarray, path_distance: float) -> int:
"""Get the index corresponding to the given path distance"""
if len(pos_x_array) == 0:
return 0
indices = np.where(pos_x_array <= path_distance)[0]
return indices[-1] if indices.size > 0 else 0
def _map_to_screen(self, in_x, in_y, in_z):
"""Project a point in car space to screen space"""
input_pt = np.array([in_x, in_y, in_z])
pt = self._car_space_transform @ input_pt
if abs(pt[2]) < 1e-6:
return None
x, y = pt[0] / pt[2], pt[1] / pt[2]
clip = self._clip_region
if not (clip.x <= x <= clip.x + clip.width and clip.y <= y <= clip.y + clip.height):
return None
return (x, y)
def _map_line_to_polygon(self, line: np.ndarray, y_off: float, z_off: float, max_idx: int, max_distance: float, allow_invert: bool = True) -> np.ndarray:
"""Convert 3D line to 2D polygon for rendering."""
if line.shape[0] == 0:
return np.empty((0, 2), dtype=np.float32)
# Slice points and filter non-negative x-coordinates
points = line[:max_idx + 1]
# Interpolate around max_idx so path end is smooth (max_distance is always >= p0.x)
if 0 < max_idx < line.shape[0] - 1:
p0 = line[max_idx]
p1 = line[max_idx + 1]
x0, x1 = p0[0], p1[0]
interp_y = np.interp(max_distance, [x0, x1], [p0[1], p1[1]])
interp_z = np.interp(max_distance, [x0, x1], [p0[2], p1[2]])
interp_point = np.array([max_distance, interp_y, interp_z], dtype=points.dtype)
points = np.concatenate((points, interp_point[None, :]), axis=0)
points = points[points[:, 0] >= 0]
if points.shape[0] == 0:
return np.empty((0, 2), dtype=np.float32)
N = points.shape[0]
# Generate left and right 3D points in one array using broadcasting
offsets = np.array([[0, -y_off, z_off], [0, y_off, z_off]], dtype=np.float32)
points_3d = points[None, :, :] + offsets[:, None, :] # Shape: 2xNx3
points_3d = points_3d.reshape(2 * N, 3) # Shape: (2*N)x3
# Transform all points to projected space in one operation
proj = self._car_space_transform @ points_3d.T # Shape: 3x(2*N)
proj = proj.reshape(3, 2, N)
left_proj = proj[:, 0, :]
right_proj = proj[:, 1, :]
# Filter points where z is sufficiently large
valid_proj = (np.abs(left_proj[2]) >= 1e-6) & (np.abs(right_proj[2]) >= 1e-6)
if not np.any(valid_proj):
return np.empty((0, 2), dtype=np.float32)
# Compute screen coordinates
left_screen = left_proj[:2, valid_proj] / left_proj[2, valid_proj][None, :]
right_screen = right_proj[:2, valid_proj] / right_proj[2, valid_proj][None, :]
# Define clip region bounds
clip = self._clip_region
x_min, x_max = clip.x, clip.x + clip.width
y_min, y_max = clip.y, clip.y + clip.height
# Filter points within clip region
left_in_clip = (
(left_screen[0] >= x_min) & (left_screen[0] <= x_max) &
(left_screen[1] >= y_min) & (left_screen[1] <= y_max)
)
right_in_clip = (
(right_screen[0] >= x_min) & (right_screen[0] <= x_max) &
(right_screen[1] >= y_min) & (right_screen[1] <= y_max)
)
both_in_clip = left_in_clip & right_in_clip
if not np.any(both_in_clip):
return np.empty((0, 2), dtype=np.float32)
# Select valid and clipped points
left_screen = left_screen[:, both_in_clip]
right_screen = right_screen[:, both_in_clip]
# Handle Y-coordinate inversion on hills
if not allow_invert and left_screen.shape[1] > 1:
y = left_screen[1, :] # y-coordinates
keep = y == np.minimum.accumulate(y)
if not np.any(keep):
return np.empty((0, 2), dtype=np.float32)
left_screen = left_screen[:, keep]
right_screen = right_screen[:, keep]
return np.vstack((left_screen.T, right_screen[:, ::-1].T)).astype(np.float32)
@staticmethod
def _hsla_to_color(h, s, l, a):
rgb = colorsys.hls_to_rgb(h, l, s)
return rl.Color(
int(rgb[0] * 255),
int(rgb[1] * 255),
int(rgb[2] * 255),
int(a * 255)
)
@staticmethod
def _blend_colors(begin_colors, end_colors, t):
if t >= 1.0:
return end_colors
if t <= 0.0:
return begin_colors
inv_t = 1.0 - t
return [rl.Color(
int(inv_t * start.r + t * end.r),
int(inv_t * start.g + t * end.g),
int(inv_t * start.b + t * end.b),
int(inv_t * start.a + t * end.a)
) for start, end in zip(begin_colors, end_colors, strict=True)]
def _update_rainbow_gradient(self, v_ego):
# Scroll speed
rotation_speed = max(0.01, v_ego) / gui_app.target_fps / DP_RAINBOW_SCROLL_SPEED_FACTOR
self._dp_ui_rainbow_rotation += rotation_speed
if self._dp_ui_rainbow_rotation > 1.0:
self._dp_ui_rainbow_rotation -= 1.0
gradient_stops = np.linspace(0, 1, DP_RAINBOW_GRADIENT_SAMPLES)
hues = (gradient_stops * DP_RAINBOW_NUM_REPEATS + self._dp_ui_rainbow_rotation) % 1.0
# Vectorized hsv_to_rgb
i = np.floor(hues * DP_RAINBOW_HUE_SECTORS).astype(np.uint8)
f = hues * DP_RAINBOW_HUE_SECTORS - i
q = 1 - f
t = f
i %= DP_RAINBOW_HUE_SECTORS
rgb = np.zeros((hues.shape[0], 3))
masks = [i == j for j in range(DP_RAINBOW_HUE_SECTORS)]
rgb[masks[0], 0] = 1
rgb[masks[0], 1] = t[masks[0]]
rgb[masks[1], 0] = q[masks[1]]
rgb[masks[1], 1] = 1
rgb[masks[2], 1] = 1
rgb[masks[2], 2] = t[masks[2]]
rgb[masks[3], 1] = q[masks[3]]
rgb[masks[3], 2] = 1
rgb[masks[4], 0] = t[masks[4]]
rgb[masks[4], 2] = 1
rgb[masks[5], 0] = 1
rgb[masks[5], 2] = q[masks[5]]
rgb_int = (rgb * 255).astype(np.uint8)
colors = [rl.Color(r, g, b, DP_RAINBOW_ALPHA) for r, g, b in rgb_int]
self._dp_ui_rainbow_gradient = Gradient(
start=(0.0, 1.0),
end=(0.0, 0.0),
colors=colors,
stops=gradient_stops.tolist(),
)
def _dp_paint_centered_lead_text(self, text, size, x, y):
font = gui_app.font(FontWeight.CHINA)
text_width = measure_text_cached(font, text, size).x
text_x = x - text_width / 2
rl.draw_text_ex(font, text, rl.Vector2(text_x, y), size, 0, rl.WHITE)
def _draw_live_tracks(self, sm):
font = gui_app.font(FontWeight.CHINA)
live_tracks = sm['liveTracks']
font_size = 40
line_height = 40
for point in live_tracks.points:
d_rel = point.dRel
y_rel = point.yRel
v_rel = point.vRel
z_on_path = self._path_offset_z
if d_rel >= 0 and self._path.raw_points.shape[0] > 0:
path_x = self._path.raw_points[:, 0]
path_z = self._path.raw_points[:, 2]
idx = self._get_path_length_idx(path_x, d_rel)
if idx < len(path_z):
z_on_path += path_z[idx]
screen_pos = self._map_to_screen(d_rel, -y_rel, z_on_path)
if screen_pos:
sx, sy = int(screen_pos[0]), int(screen_pos[1])
rl.draw_circle(sx, sy, 10, rl.Color(255, 0, 0, 200))
if ui_state.is_metric:
dist_unit, speed_unit = "m", "m/s"
d_rel_str = f"{d_rel:.2f}"
y_rel_str = f"{y_rel:.2f}"
v_rel_str = f"{v_rel:.2f}"
else:
dist_unit, speed_unit = "ft", "mph"
d_rel_str = f"{d_rel * 3.28084:.2f}"
y_rel_str = f"{y_rel * 3.28084:.2f}"
v_rel_str = f"{v_rel * 2.23694:.2f}"
info_text = (
f"ID: {point.trackId}\n"
f"d: {d_rel_str} {dist_unit}\n"
f"y: {y_rel_str} {dist_unit}\n"
f"dV: {v_rel_str} {speed_unit}"
)
lines = info_text.split('\n')
text_x = sx + 15
text_y = sy - 20
for i, line in enumerate(lines):
rl.draw_text_ex(font, line, rl.Vector2(text_x, text_y + i * line_height), font_size, 0, rl.WHITE)