openpilot/tinygrad_repo/test/unit/test_winograd.py
Vehicle Researcher c5d5c5d1f3 openpilot v0.10.1 release
date: 2025-10-24T00:30:59
master commit: 405631baf9685e171a0dd19547cb763f1b163d18
2025-10-24 00:31:03 -07:00

75 lines
2.7 KiB
Python

import unittest, sys
import numpy as np
from tinygrad import Tensor, GlobalCounters, dtypes, Context, nn
from tinygrad.helpers import CI, Profiling, WINO
@unittest.skipIf(sys.platform.startswith("win"), "flaky on Windows")
class TestWinogradClose(unittest.TestCase):
def test_close(self):
inp = Tensor.rand(1, 16, 16, 16)
conv = nn.Conv2d(16, 16, 3)
conv(inp).realize() # warmup
GlobalCounters.reset()
print("non winograd")
with Context(WINO=0):
cmp = conv(inp).realize() # warmup
GlobalCounters.reset()
print("winograd")
with Context(WINO=1):
test = conv(inp).realize()
np.testing.assert_allclose(cmp.numpy(), test.numpy(), atol=1e-5)
@unittest.skipIf(sys.platform.startswith("win"), "flaky on Windows")
class TestWinograd(unittest.TestCase):
def setUp(self):
self.old = WINO.value
WINO.value = 1
def tearDown(self):
WINO.value = self.old
def test_profile(self):
x,w = Tensor.rand(1,4,9,9).realize(), Tensor.rand(4,4,3,3).realize()
with Profiling(enabled=not CI, sort='time'):
Tensor.conv2d(x,w).realize()
def test_forward_kernels(self):
x,w = Tensor.rand(1,4,9,9).realize(), Tensor.rand(4,4,3,3).realize()
out = Tensor.conv2d(x,w)
self.assertEqual(len(out.schedule()), 4)
def test_backward_kernels(self):
x,w = Tensor.empty(1,4,9,9,requires_grad=True).realize(), Tensor.empty(4,4,3,3,requires_grad=True).realize()
out = Tensor.conv2d(x,w, padding=1)
out.mean().backward()
backward_schedule = Tensor.schedule(x.grad, w.grad)
self.assertEqual(len(backward_schedule), 9)
def test_counters(self):
IC, OC, X, Y = 4,4,9,9
#OC, IC, X, Y = 512, 256, 8, 8
x,w = Tensor.rand(1,IC,Y,X).realize(), Tensor.rand(OC,IC,3,3).realize()
GlobalCounters.reset()
Tensor.conv2d(x,w).realize()
ops_wino, mem_wino = GlobalCounters.global_ops, GlobalCounters.global_mem
WINO.value = 0
GlobalCounters.reset()
Tensor.conv2d(x,w).realize()
ops_normal, mem_normal = GlobalCounters.global_ops, GlobalCounters.global_mem
ops_ratio, mem_ratio = ops_wino/ops_normal, mem_wino/mem_normal
print(f"ops: normal {ops_normal:9d} wino {ops_wino:9d} ratio {ops_ratio:.2f}")
print(f"mem: normal {mem_normal:9d} wino {mem_wino:9d} ratio {mem_ratio:.2f}")
self.assertLess(ops_ratio, 2.6) # TODO: there's issues with factorization now
self.assertLess(mem_ratio, 10)
def test_dtype(self):
IC, OC, X, Y = 4,4,9,9
x,w = Tensor.empty(1,IC,Y,X), Tensor.empty(OC,IC,3,3)
self.assertEqual(Tensor.conv2d(x,w).dtype, dtypes.default_float)
x,w = Tensor.empty(1,IC,Y,X,dtype=dtypes.half), Tensor.empty(OC,IC,3,3,dtype=dtypes.half)
self.assertEqual(Tensor.conv2d(x,w).dtype, dtypes.half)
if __name__ == '__main__':
unittest.main(verbosity=2)