openpilot/selfdrive/controls/controlsd.py
2025-11-11 22:44:56 +08:00

241 lines
10 KiB
Python
Executable File

#!/usr/bin/env python3
import math
from numbers import Number
from cereal import car, log
import cereal.messaging as messaging
from openpilot.common.constants import CV
from openpilot.common.params import Params
from openpilot.common.realtime import config_realtime_process, DT_CTRL, Priority, Ratekeeper
from openpilot.common.swaglog import cloudlog
from opendbc.car.car_helpers import interfaces
from opendbc.car.vehicle_model import VehicleModel
from openpilot.selfdrive.controls.lib.drive_helpers import clip_curvature
from openpilot.selfdrive.controls.lib.latcontrol import LatControl
from openpilot.selfdrive.controls.lib.latcontrol_pid import LatControlPID
from openpilot.selfdrive.controls.lib.latcontrol_angle import LatControlAngle, STEER_ANGLE_SATURATION_THRESHOLD
from openpilot.selfdrive.controls.lib.latcontrol_torque import LatControlTorque
from openpilot.selfdrive.controls.lib.longcontrol import LongControl
from openpilot.selfdrive.modeld.modeld import LAT_SMOOTH_SECONDS
from openpilot.selfdrive.locationd.helpers import PoseCalibrator, Pose
State = log.SelfdriveState.OpenpilotState
LaneChangeState = log.LaneChangeState
LaneChangeDirection = log.LaneChangeDirection
ACTUATOR_FIELDS = tuple(car.CarControl.Actuators.schema.fields.keys())
class Controls:
def __init__(self) -> None:
self.params = Params()
cloudlog.info("controlsd is waiting for CarParams")
self.CP = messaging.log_from_bytes(self.params.get("CarParams", block=True), car.CarParams)
cloudlog.info("controlsd got CarParams")
self.CI = interfaces[self.CP.carFingerprint](self.CP)
self.sm = messaging.SubMaster(['liveDelay', 'liveParameters', 'liveTorqueParameters', 'modelV2', 'selfdriveState',
'liveCalibration', 'livePose', 'longitudinalPlan', 'carState', 'carOutput',
'driverMonitoringState', 'onroadEvents', 'driverAssistance'], poll='selfdriveState')
self.pm = messaging.PubMaster(['carControl', 'controlsState', 'dpControlsState'])
self.steer_limited_by_safety = False
self.curvature = 0.0
self.desired_curvature = 0.0
self.pose_calibrator = PoseCalibrator()
self.calibrated_pose: Pose | None = None
self.LoC = LongControl(self.CP)
self.VM = VehicleModel(self.CP)
self.LaC: LatControl
if self.CP.steerControlType == car.CarParams.SteerControlType.angle:
self.LaC = LatControlAngle(self.CP, self.CI, DT_CTRL)
elif self.CP.lateralTuning.which() == 'pid':
self.LaC = LatControlPID(self.CP, self.CI, DT_CTRL)
elif self.CP.lateralTuning.which() == 'torque':
self.LaC = LatControlTorque(self.CP, self.CI, DT_CTRL)
self.alka_enabled = self.params.get_bool("dp_lat_alka")
self.alka_active = False
def update(self):
self.sm.update(15)
if self.sm.updated["liveCalibration"]:
self.pose_calibrator.feed_live_calib(self.sm['liveCalibration'])
if self.sm.updated["livePose"]:
device_pose = Pose.from_live_pose(self.sm['livePose'])
self.calibrated_pose = self.pose_calibrator.build_calibrated_pose(device_pose)
def state_control(self):
CS = self.sm['carState']
# Update VehicleModel
lp = self.sm['liveParameters']
x = max(lp.stiffnessFactor, 0.1)
sr = max(lp.steerRatio, 0.1)
self.VM.update_params(x, sr)
steer_angle_without_offset = math.radians(CS.steeringAngleDeg - lp.angleOffsetDeg)
self.curvature = -self.VM.calc_curvature(steer_angle_without_offset, CS.vEgo, lp.roll)
# Update Torque Params
if self.CP.lateralTuning.which() == 'torque':
torque_params = self.sm['liveTorqueParameters']
if self.sm.all_checks(['liveTorqueParameters']) and torque_params.useParams:
self.LaC.update_live_torque_params(torque_params.latAccelFactorFiltered, torque_params.latAccelOffsetFiltered,
torque_params.frictionCoefficientFiltered)
long_plan = self.sm['longitudinalPlan']
model_v2 = self.sm['modelV2']
CC = car.CarControl.new_message()
CC.enabled = self.sm['selfdriveState'].enabled
# Check which actuators can be enabled
standstill = abs(CS.vEgo) <= max(self.CP.minSteerSpeed, 0.3) or CS.standstill
self.alka_active = self.alka_enabled and CS.cruiseState.available and not standstill and CS.gearShifter != car.CarState.GearShifter.reverse
lat_active = self.sm['selfdriveState'].active or self.alka_active
CC.latActive = lat_active and not CS.steerFaultTemporary and not CS.steerFaultPermanent and \
(not standstill or self.CP.steerAtStandstill)
CC.longActive = CC.enabled and not any(e.overrideLongitudinal for e in self.sm['onroadEvents']) and self.CP.openpilotLongitudinalControl
actuators = CC.actuators
actuators.longControlState = self.LoC.long_control_state
# Enable blinkers while lane changing
if model_v2.meta.laneChangeState != LaneChangeState.off:
CC.leftBlinker = model_v2.meta.laneChangeDirection == LaneChangeDirection.left
CC.rightBlinker = model_v2.meta.laneChangeDirection == LaneChangeDirection.right
if not CC.latActive:
self.LaC.reset()
if not CC.longActive:
self.LoC.reset()
# accel PID loop
pid_accel_limits = self.CI.get_pid_accel_limits(self.CP, CS.vEgo, CS.vCruise * CV.KPH_TO_MS)
actuators.accel = float(self.LoC.update(CC.longActive, CS, long_plan.aTarget, long_plan.shouldStop, pid_accel_limits))
# Steering PID loop and lateral MPC
# Reset desired curvature to current to avoid violating the limits on engage
new_desired_curvature = model_v2.action.desiredCurvature if CC.latActive else self.curvature
self.desired_curvature, curvature_limited = clip_curvature(CS.vEgo, self.desired_curvature, new_desired_curvature, lp.roll)
lat_delay = self.sm["liveDelay"].lateralDelay + LAT_SMOOTH_SECONDS
actuators.curvature = self.desired_curvature
steer, steeringAngleDeg, lac_log = self.LaC.update(CC.latActive, CS, self.VM, lp,
self.steer_limited_by_safety, self.desired_curvature,
curvature_limited, lat_delay)
actuators.torque = float(steer)
actuators.steeringAngleDeg = float(steeringAngleDeg)
# Ensure no NaNs/Infs
for p in ACTUATOR_FIELDS:
attr = getattr(actuators, p)
if not isinstance(attr, Number):
continue
if not math.isfinite(attr):
cloudlog.error(f"actuators.{p} not finite {actuators.to_dict()}")
setattr(actuators, p, 0.0)
return CC, lac_log
def publish(self, CC, lac_log):
CS = self.sm['carState']
# Orientation and angle rates can be useful for carcontroller
# Only calibrated (car) frame is relevant for the carcontroller
CC.currentCurvature = self.curvature
if self.calibrated_pose is not None:
CC.orientationNED = self.calibrated_pose.orientation.xyz.tolist()
CC.angularVelocity = self.calibrated_pose.angular_velocity.xyz.tolist()
CC.cruiseControl.override = CC.enabled and not CC.longActive and self.CP.openpilotLongitudinalControl
CC.cruiseControl.cancel = CS.cruiseState.enabled and (not CC.enabled or not self.CP.pcmCruise)
CC.cruiseControl.resume = CC.enabled and CS.cruiseState.standstill and not self.sm['longitudinalPlan'].shouldStop
hudControl = CC.hudControl
hudControl.setSpeed = float(CS.vCruiseCluster * CV.KPH_TO_MS)
hudControl.speedVisible = CC.enabled
hudControl.lanesVisible = CC.enabled
hudControl.leadVisible = self.sm['longitudinalPlan'].hasLead
hudControl.leadDistanceBars = self.sm['selfdriveState'].personality.raw + 1
hudControl.visualAlert = self.sm['selfdriveState'].alertHudVisual
hudControl.rightLaneVisible = True
hudControl.leftLaneVisible = True
if self.sm.valid['driverAssistance']:
hudControl.leftLaneDepart = self.sm['driverAssistance'].leftLaneDeparture
hudControl.rightLaneDepart = self.sm['driverAssistance'].rightLaneDeparture
if self.sm['selfdriveState'].active:
CO = self.sm['carOutput']
if self.CP.steerControlType == car.CarParams.SteerControlType.angle:
self.steer_limited_by_safety = abs(CC.actuators.steeringAngleDeg - CO.actuatorsOutput.steeringAngleDeg) > \
STEER_ANGLE_SATURATION_THRESHOLD
else:
self.steer_limited_by_safety = abs(CC.actuators.torque - CO.actuatorsOutput.torque) > 1e-2
# TODO: both controlsState and carControl valids should be set by
# sm.all_checks(), but this creates a circular dependency
# dpControlsState
dat = messaging.new_message('dpControlsState')
dat.valid = True
ncs = dat.dpControlsState
ncs.alkaActive = self.alka_active
self.pm.send('dpControlsState', dat)
# controlsState
dat = messaging.new_message('controlsState')
dat.valid = CS.canValid
cs = dat.controlsState
cs.curvature = self.curvature
cs.longitudinalPlanMonoTime = self.sm.logMonoTime['longitudinalPlan']
cs.lateralPlanMonoTime = self.sm.logMonoTime['modelV2']
cs.desiredCurvature = self.desired_curvature
cs.longControlState = self.LoC.long_control_state
cs.upAccelCmd = float(self.LoC.pid.p)
cs.uiAccelCmd = float(self.LoC.pid.i)
cs.ufAccelCmd = float(self.LoC.pid.f)
cs.forceDecel = bool((self.sm['driverMonitoringState'].awarenessStatus < 0.) or
(self.sm['selfdriveState'].state == State.softDisabling))
lat_tuning = self.CP.lateralTuning.which()
if self.CP.steerControlType == car.CarParams.SteerControlType.angle:
cs.lateralControlState.angleState = lac_log
elif lat_tuning == 'pid':
cs.lateralControlState.pidState = lac_log
elif lat_tuning == 'torque':
cs.lateralControlState.torqueState = lac_log
self.pm.send('controlsState', dat)
# carControl
cc_send = messaging.new_message('carControl')
cc_send.valid = CS.canValid
cc_send.carControl = CC
self.pm.send('carControl', cc_send)
def run(self):
rk = Ratekeeper(100, print_delay_threshold=None)
while True:
self.update()
CC, lac_log = self.state_control()
self.publish(CC, lac_log)
rk.monitor_time()
def main():
config_realtime_process(4, Priority.CTRL_HIGH)
controls = Controls()
controls.run()
if __name__ == "__main__":
main()