openpilot/selfdrive/modeld/parse_model_outputs.py
Vehicle Researcher c5d5c5d1f3 openpilot v0.10.1 release
date: 2025-10-24T00:30:59
master commit: 405631baf9685e171a0dd19547cb763f1b163d18
2025-10-24 00:31:03 -07:00

123 lines
5.3 KiB
Python

import numpy as np
from openpilot.selfdrive.modeld.constants import ModelConstants
def safe_exp(x, out=None):
# -11 is around 10**14, more causes float16 overflow
return np.exp(np.clip(x, -np.inf, 11), out=out)
def sigmoid(x):
return 1. / (1. + safe_exp(-x))
def softmax(x, axis=-1):
x -= np.max(x, axis=axis, keepdims=True)
if x.dtype == np.float32 or x.dtype == np.float64:
safe_exp(x, out=x)
else:
x = safe_exp(x)
x /= np.sum(x, axis=axis, keepdims=True)
return x
class Parser:
def __init__(self, ignore_missing=False):
self.ignore_missing = ignore_missing
def check_missing(self, outs, name):
missing = name not in outs
if missing and not self.ignore_missing:
raise ValueError(f"Missing output {name}")
return missing
def parse_categorical_crossentropy(self, name, outs, out_shape=None):
if self.check_missing(outs, name):
return
raw = outs[name]
if out_shape is not None:
raw = raw.reshape((raw.shape[0],) + out_shape)
outs[name] = softmax(raw, axis=-1)
def parse_binary_crossentropy(self, name, outs):
if self.check_missing(outs, name):
return
raw = outs[name]
outs[name] = sigmoid(raw)
def parse_mdn(self, name, outs, in_N=0, out_N=1, out_shape=None):
if self.check_missing(outs, name):
return
raw = outs[name]
raw = raw.reshape((raw.shape[0], max(in_N, 1), -1))
n_values = (raw.shape[2] - out_N)//2
pred_mu = raw[:,:,:n_values]
pred_std = safe_exp(raw[:,:,n_values: 2*n_values])
if in_N > 1:
weights = np.zeros((raw.shape[0], in_N, out_N), dtype=raw.dtype)
for i in range(out_N):
weights[:,:,i - out_N] = softmax(raw[:,:,i - out_N], axis=-1)
if out_N == 1:
for fidx in range(weights.shape[0]):
idxs = np.argsort(weights[fidx][:,0])[::-1]
weights[fidx] = weights[fidx][idxs]
pred_mu[fidx] = pred_mu[fidx][idxs]
pred_std[fidx] = pred_std[fidx][idxs]
full_shape = tuple([raw.shape[0], in_N] + list(out_shape))
outs[name + '_weights'] = weights
outs[name + '_hypotheses'] = pred_mu.reshape(full_shape)
outs[name + '_stds_hypotheses'] = pred_std.reshape(full_shape)
pred_mu_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype)
pred_std_final = np.zeros((raw.shape[0], out_N, n_values), dtype=raw.dtype)
for fidx in range(weights.shape[0]):
for hidx in range(out_N):
idxs = np.argsort(weights[fidx,:,hidx])[::-1]
pred_mu_final[fidx, hidx] = pred_mu[fidx, idxs[0]]
pred_std_final[fidx, hidx] = pred_std[fidx, idxs[0]]
else:
pred_mu_final = pred_mu
pred_std_final = pred_std
if out_N > 1:
final_shape = tuple([raw.shape[0], out_N] + list(out_shape))
else:
final_shape = tuple([raw.shape[0],] + list(out_shape))
outs[name] = pred_mu_final.reshape(final_shape)
outs[name + '_stds'] = pred_std_final.reshape(final_shape)
def is_mhp(self, outs, name, shape):
if self.check_missing(outs, name):
return False
if outs[name].shape[1] == 2 * shape:
return False
return True
def parse_vision_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]:
self.parse_mdn('pose', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
self.parse_mdn('wide_from_device_euler', outs, in_N=0, out_N=0, out_shape=(ModelConstants.WIDE_FROM_DEVICE_WIDTH,))
self.parse_mdn('road_transform', outs, in_N=0, out_N=0, out_shape=(ModelConstants.POSE_WIDTH,))
self.parse_mdn('lane_lines', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_LANE_LINES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
self.parse_mdn('road_edges', outs, in_N=0, out_N=0, out_shape=(ModelConstants.NUM_ROAD_EDGES,ModelConstants.IDX_N,ModelConstants.LANE_LINES_WIDTH))
self.parse_binary_crossentropy('lane_lines_prob', outs)
self.parse_categorical_crossentropy('desire_pred', outs, out_shape=(ModelConstants.DESIRE_PRED_LEN,ModelConstants.DESIRE_PRED_WIDTH))
self.parse_binary_crossentropy('meta', outs)
self.parse_binary_crossentropy('lead_prob', outs)
lead_mhp = self.is_mhp(outs, 'lead', ModelConstants.LEAD_MHP_SELECTION * ModelConstants.LEAD_TRAJ_LEN * ModelConstants.LEAD_WIDTH)
lead_in_N, lead_out_N = (ModelConstants.LEAD_MHP_N, ModelConstants.LEAD_MHP_SELECTION) if lead_mhp else (0, 0)
lead_out_shape = (ModelConstants.LEAD_TRAJ_LEN, ModelConstants.LEAD_WIDTH) if lead_mhp else \
(ModelConstants.LEAD_MHP_SELECTION, ModelConstants.LEAD_TRAJ_LEN, ModelConstants.LEAD_WIDTH)
self.parse_mdn('lead', outs, in_N=lead_in_N, out_N=lead_out_N, out_shape=lead_out_shape)
return outs
def parse_policy_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]:
plan_mhp = self.is_mhp(outs, 'plan', ModelConstants.IDX_N * ModelConstants.PLAN_WIDTH)
plan_in_N, plan_out_N = (ModelConstants.PLAN_MHP_N, ModelConstants.PLAN_MHP_SELECTION) if plan_mhp else (0, 0)
self.parse_mdn('plan', outs, in_N=plan_in_N, out_N=plan_out_N, out_shape=(ModelConstants.IDX_N, ModelConstants.PLAN_WIDTH))
self.parse_categorical_crossentropy('desire_state', outs, out_shape=(ModelConstants.DESIRE_PRED_WIDTH,))
return outs
def parse_outputs(self, outs: dict[str, np.ndarray]) -> dict[str, np.ndarray]:
outs = self.parse_vision_outputs(outs)
outs = self.parse_policy_outputs(outs)
return outs