openpilot/frogpilot/controls/lib/curve_speed_controller.py
2025-11-01 12:00:00 -07:00

106 lines
3.6 KiB
Python

#!/usr/bin/env python3
import json
import numpy as np
from openpilot.common.realtime import DT_MDL
from openpilot.frogpilot.common.frogpilot_variables import CRUISING_SPEED, DEFAULT_LATERAL_ACCELERATION, PLANNER_TIME, params
CALIBRATION_PROGRESS_THRESHOLD = 10 / DT_MDL
MAX_CURVATURE = 0.1
MIN_CURVATURE = 0.001
PERCENTILE = 90
ROUNDING_PRECISION = 5
STEP = 0.001
class CurveSpeedController:
def __init__(self, FrogPilotVCruise):
self.frogpilot_planner = FrogPilotVCruise.frogpilot_planner
self.enable_training = False
self.target_set = False
self.training_timer = 0
self.curvature_data = json.loads(params.get("CurvatureData") or "{}")
self.required_curvatures = [str(round(road_curvature, ROUNDING_PRECISION)) for road_curvature in np.arange(MIN_CURVATURE, MAX_CURVATURE + STEP, STEP)]
self.update_lateral_acceleration()
def log_data(self, v_ego, sm):
self.enable_training = v_ego > CRUISING_SPEED
self.enable_training &= not self.frogpilot_planner.tracking_lead
self.enable_training &= not sm["carControl"].longActive
if self.enable_training:
self.training_timer += DT_MDL
if self.training_timer >= PLANNER_TIME and self.frogpilot_planner.driving_in_curve and not (sm["carState"].leftBlinker or sm["carState"].rightBlinker):
lateral_acceleration = abs(self.frogpilot_planner.lateral_acceleration)
road_curvature = abs(round(self.frogpilot_planner.road_curvature, ROUNDING_PRECISION))
key = str(road_curvature)
if key in self.curvature_data:
data = self.curvature_data[key]
average = data["average"]
count = data["count"]
self.curvature_data[key] = {
"average": ((average * count) + lateral_acceleration) / (count + 1),
"count": count + 1
}
else:
self.curvature_data[key] = {
"average": lateral_acceleration,
"count": 1
}
self.update_lateral_acceleration()
else:
self.enable_training = False
elif self.training_timer >= PLANNER_TIME:
progress = 0.0
for key in self.required_curvatures:
if key in self.curvature_data:
progress += min(self.curvature_data[key]["count"] / CALIBRATION_PROGRESS_THRESHOLD, 1.0)
params.put_float_nonblocking("CalibrationProgress", (progress / len(self.required_curvatures)) * 100)
params.put_nonblocking("CurvatureData", json.dumps(self.curvature_data))
self.enable_training = False
self.training_timer = 0
else:
self.enable_training = False
self.training_timer = 0
def update_lateral_acceleration(self):
if self.curvature_data:
all_samples = [data["average"] for data in self.curvature_data.values()]
self.lateral_acceleration = float(np.percentile(all_samples, PERCENTILE))
else:
self.lateral_acceleration = DEFAULT_LATERAL_ACCELERATION
params.put_float_nonblocking("CalibratedLateralAcceleration", self.lateral_acceleration)
def update_target(self, v_ego):
lateral_acceleration = self.lateral_acceleration
if self.frogpilot_planner.frogpilot_weather.weather_id != 0:
lateral_acceleration -= self.lateral_acceleration * self.frogpilot_planner.frogpilot_weather.reduce_lateral_acceleration
if self.target_set:
csc_speed = (lateral_acceleration / abs(self.frogpilot_planner.road_curvature))**0.5
decel_rate = (v_ego - csc_speed) / self.frogpilot_planner.time_to_curve
self.target -= decel_rate * DT_MDL
self.target = float(np.clip(self.target, CRUISING_SPEED, csc_speed))
else:
self.target_set = True
self.target = v_ego